Tivoli Netcool Supports
Guide to
the
MTTrapd [SNMP] Probe
by
Jim Hutchinson
Document release: 2.4

77
2
%

Supports Guide to the MTTrapd probe

Table of Contents

1lintroduction

1.10verview
Event processing

2Performance

2.1Name Resolution
2.2Replacing hostname calls
2.3Buffering

2.4SNMPv3 configuration
2.4.1SnmpConfigChangeDetectioninterval
2.5Measuring

2.6Monitoring

2.7Architectures

2.7.1Mixing Traps and INFORMS
2.7.2Mixing protocols
2.7.3Mixing SNMP versions
2.7.4Understanding SNMP data
2.7.5Example Architecture

3New features

3.1Heartbeating

3.1.1Heartbeat Property
3.1.2ProbeWatchHeartbeatinterval property
3.2SNMP engine facilities

3.2.1Configuring the command line interface
3.2.2New Commands

3.3Host Naming facilities

4Resilience

4.10verview

4.2Failover and Failback

4.3Peer to Peer

4.3.1BeatThreshold and BeatInterval
4.3.2Single probe server

5Testing

5.1UDP Traps

5.2TCP Traps

5.3WireShark RAW TCP data
5.4WireShark SNMPv3 trap inspection
5.5SNMP v3 traps and informs
5.5.1Sending an SNMPv3 INFORM trap
5.5.2Sending an SNMPv3 trap

5.6More on SNMPv3 Traps
5.6.1Special characters in a passphrase
5.6.2Extended encryption support
5.7SNMP Flooding

6Troubleshooting

6.1Performance

6.1.1Name resolution
6.1.1.1Rules File Considerations
6.1.2SNMP INFORMS
6.1.30bject Server

6.2Logging dropped traps
6.3Missing Engineld's

IBM Copyright 2020

Supports Guide to the MTTrapd probe

6.4Missing traps

6.5SNMPv3 traps

6.5.1Additional SNMPv3 security
6.5.2Example Secure SNMPvV3 configuration
6.5.2.1Example trap#1

6.5.2.2Example trap#2

6.5.2.3Example trap#3

7Useful scripts

7.1SendSNMPv1HB
7.2sendSNMPv2HB
7.3sendSNMPV3DES_noauthnopriv
7.4sendSNMPv3DES_authpriv

8MIB MANAGER

8.1Example usage

IBM Copyright 2020

Supports Guide to the MTTrapd probe

1 Introduction

1.1 Overview

The MTTrapd (SNMP) probe is a Generic probe used to process SNMP traps. It is a multi-threaded probe and
supports both UDP and TCP traps.

The SNMP versions supported are;

SNMPv1 traps
SNMPv2c traps
SNMPv3 traps
SNMPv2c informs
SNMPv3 informs

IBM Copyright 2020

Supports Guide to the MTTrapd probe

Event processing

The Multi-threaded nature of the MTTrap probe receives traps from various source types, parses them using the
Net-SNMP API and places the SNMP RFC Compliant traps on the probes queue for processing:

Probes head
on given
port

PRI EE SN NN N NN EEE I EEEEEEEEEEEEEEEEEEEEEEEEEENy
os® ‘.' a,

INFORM

SNMPv3

. o

L] * ®
..l--':ll“

Any traps or informs that are non-compliant or do not meet the SNPMv3 security details provided
using the probes mttrapd.conf file are dropped silently.

IBM Copyright 2020

Supports Guide to the MTTrapd probe

2 Performance

2.1 Name Resolution

Name resolution takes time, therefore turning it off improves performance;
UNIX

NoNameResolution : 1

Windows:

NoNetbiosLookups : 1

The latest version of the probe supports a new feature that allows DNS lookups to be managed via the probe
property settings. This allows the DNS lookups to be performed.

For example

id

Built-in Hostname cache

#

NoNameResolution : O

HostnameTableSize : 50000

ActiveHostnameDuration : 30

RefreshHostnameInterval : 1440

These settings allow the probe to hold 50,000 lookups in memory, and refresh them every 24 hours.
Please refer to the probes manual to better understand these settings and their impact.

2.2 Replacing hostname calls

'You can reduce the number of calls made to hostname and the probes hosts IP Address using a one time lookup
and use static variables instead when the values are required.

if (match ($MyHostname, ""))
{

$MyHostname = hostname ()

tMyIPHostname = gethostaddr ($MyHostname)
}

@Manager = %$Manager + "@" + %MyIPHostname + ":" + "QO"

log (debug, "MYDEBUG: %MyHostname = " + %MyHostname)
log (debug, "MYDEBUG: S$MyIPHostname = " + SMyIPHostname)

IBM Copyright 2020

Supports Guide to the MTTrapd probe

2.3 Buffering

Enabling buffering on probes allows a busy probe to send events in blocks, based on BufferSize, which is much
more efficient for an object server that needs to manage more than a few clients. Ensure the FlushBufferinterval is
set to a value that is suitable for the environment [Typically from 1-60];

BufferSize
FlushBufferInterval

2.4 SNMPv3 configuration

It is recommended to create a directory to hold the source SNMPv3 security configuration file per probe instance
(ConfPath). This allows the source configuration file to be maintained, rather than overwritten. The ConfPath and
PersistentDir should be secured as required using the operating systems file system permissions.

p SOMNIHOME/var/snmpv3/conf
vi SOMNIHOME/var/snmpv3/conf/mttrapd.conf
createUser -e 010203040506 trapuser MD5 mdSpassword DES despassword

‘wq
vi SOMNIHOME/probes/Solaris2/mttrapd.props

ConfPath : '"SOMNIHOME/var/snmpv3/conf'
PersistentDir : 'SOMNIHOME/var/snmpv3'

TwWqg

The property SnmpConfigChangeDetectionInterval determines the periodicity of the checks on the ConfPath
mttrapd.conf file. The default is to check every minute and see if there are new entries to parse. At message level
informational the probe will log these checks.

* No updates
Config File is old and will not be parsed.

* ConfPath mttrapd.conf file was read
Processing config file completed.
User credentials have been refreshed.

\With the default property settings you can update an existing engineid by first removing the entry from the ConfPath
mttrapd.conf file, and waiting for the 'refreshed' message. After this the entry can be reinstated into the ConfPath
mttrapd.conf, after which another 'refreshed' message is seen, and the new details added to the probes
PersistentDir mttrapd.conf. This can be confirmed by checking the entry disappearing from the PersistentDir
mttrapd.conf when it is commented out in the ConfPath mttrapd.conf file.

IBM Copyright 2020

Supports Guide to the MTTrapd probe

2.5 Measuring
The MTTrapd probes performance can be measured using rules file commands.

(match(%load,""))

$load = "60.60"

$load = updateload(%load)
$current load = getload(%load)
log (INFO, "Average Events per second = " + Scurrent load)

Alternatively they can be calculated manually using maths functions.
e.g.
if (match(%eps counter,""))
{
%eps_counter = 1
$start time=getdate

%end_time=getdate
$time elapsed = real (int(%end time) - int(%start time))

if (int(Stime elapsed) > 59)
{
$current load = real (%eps_counter) / real (Stime_elapsed)
log(warn, "EPS: " + $currentiload + " " + (%eps_counter) + " [" + $time7elapsed + " 1M
%eps_counter = 1
$start_time=getdate

%eps _counter = int (%eps counter) + 1

If more complex load gathering is required, please refer to the Netcool/OMNIbus probes and gateway manual under
‘Enabling self monitoring of probes’.

2.6 Monitoring

The probe does allow specific features to be monitored using the probe property values.
Enable the property LogStatisticsInterval, by setting a time in seconds, to see the queue size and number of traps
processed.

e.g.
LogStatisticsInterval : 60

E-UNK-000-000: Trap queue size is 0

E-UNK-000-000: Inform gqueue size is 0

E-UNK-000-000: Number of traps read in the last 59 seconds: 0
E-UNK-000-000: Number of traps processed in the last 59 seconds: 0

'You can also enable the TrapStat property for further information logging at MessagelLevel warning. More details
monitoring is possible when the probe is logging at MessagelLevel Debug.

IBM Copyright 2020

Supports Guide to the MTTrapd probe

2.7 Architectures

The MTTrapd probe is susceptible to trap sender problems, as it listens on an open for and queues events for
processing on a single queue. When deploying the MTTrapd probe it is important to consider the volume of traps
the probe is going to process, the traps sources performance, network congestion and vulnerability.

Using a single MTTrapd probe probe or P2P failover pair for all traps and informs is not recommended.

INFORMSs require a response from the MT Trapd probe, which can cause delays in event processing. Therefore it is
recommended that a dedicated probe or P2P failover pair is used for INFORMs, especially when the volume of
SNMP senders is large.

Although the MT Trapd probe is capable of receiving both TCP and UDP at the same time, this may cause problems
with event reception, under high loads. TCP is the best protocol to use, where event deliver needs to be
guaranteed. TCP is best for SNMPv3 traps as UDP SNMPv3 traps will be discarded silently.

SNMPV3 is a secure variant of SNMP with SNMP traps being the most secure. With this in mind, it makes sense to
use a dedicated MTTrapd probe or P2P failover pair for SNMPv3, and configure the probes properties to ensure
only SNMPv3 traps are received.

* Snmpv3ONLY
* snmpv3MinSecurityLevel

SNMP traps and INFORMSs can be created periodically, during a system restart or shutdown, excessively due to
misconfiguration, and contain large volumes of textual data. When designing the collection of SNMP data it is
important to understand the impact of missing data, and how best to manage unusual circumstances.

\When the MTTrapd probe is placed into debug mode, it logs all of the tokens for each event, as well as event
processing details. During the planning phase of the MTTrapd probe deployment it is recommended that several
hours of MTTrapd probe logs are collected from the network for analysis; Although it is understood that typically,
this type of analysis will occur after deployment, and usually after problems have already occurred.

\Ways of segregating SNMP data
¢ Periodic
Event driven
Data size
Number of senders
Number of traps

Before deciding how to segregate data, it is best to create a test environment and examine the impact of each type
of SNMP data on the probe and collection object server.

IBM Copyright 2020

Supports Guide to the MTTrapd probe

In the example given below, the customer identified that they were required to monitor two distinct networks, with
each network sending two distinct types of traps. Due to the nature of the secure network, it was decided to
implement a dedicated collection layer object server pair to prevent performance problems at the collection layer,
and to allow for custom event handling. A firewall was configured on the two MTTrapd probe servers to prevent
unauthorized IP addresses from sending data to the MTTrapd probes port. The internal network was found to be
susceptible to SNMP trap flooding, and additional logic was added to the dedicated collection object server pair to

prevent event floods from affecting the aggregation layer.

Collection ObjectServer pair #1 Collection ObjectServer pair #2

< -&» < -<&»

SNMPv3 ONLY SNMPv1 UDP
MTTrapd P2P pair MTTrapd P2P pair

Internal Network

Secure Network
Periodic SNMPv1 traps

SNMPv3 TCP traps

IBM Copyright 2020

Supports Guide to the MTTrapd probe

3 New features

This chapter outlines some of the new MTTrapd probe features available in the latest probe release.

3.1 Heartbeating

The MTrapd probe could be disconnected from the target system if the connection between them becomes
unavailable. The Heartbeat property periodically checks that the connection to the target Object Server, if it detects
that the connection is unavailable, it shuts down.

The ProbeWatchHeartbeatInterval property is used by the Return On Investment self monitoring for the probes. It
can be set to an interval in seconds:

e.g.

ProbeWatchHeartbeatInterval : 60

The Return On Investment self monitoring extension is part of the Netcool/OMNIbus extensions, and can be found
in the following directory:
SNCHOME /omnibus/extensions/roi/

Omnibus TDW Reports ROI.zip
probemanagement.sqgl
probestats.sqgl
probewatch.include

The ProbeWatchHeartbeatinterval property populates the %OplStats variables, which can be used outside of the
ROI extension to log specific performance indicators.

e.g.

if (int (%0plStatsNumberEvents) > 0)

{
Log OplStats every 100 events

if (((int (%0plStatsNumberEvents)/100)*100) == int ($0plStatsNumberEvents))

{
Calculate the Average usec timings

Saverage usec = int ((real(%0OplStatsRulesFileTimeSec) +

(real ($0plStatsRulesFileTimeUsec) /1000000) / real (%0plStatsNumberEvents)) * 1000000)
Log required details

log(info, "%0OplStatsRulesFileTime = " + $%OplStatsRulesFileTimeSec + "." +
%0plStatsRulesFileTimeUsec)

log(info, "$0plStatsNumberEvents " + S0plStatsNumberEvents)

log(info, "Average USEC timing = " + Saverage usec + " usec.")

}

}

IBM Copyright 2020

Supports Guide to the MTTrapd probe

3.2 SNMP engine facilities

Please refer to the product manuals for complete descriptions of how to enable process control and the new
SNMPv3 engine features. The following is provided as an overview of the required actions.

In order to use the new facilities the following needs to be done:
Enable the property setting:

EngineInfoProbeWatch

Load the SQL file into the object servers:

cat mttrapd create SnmpActionTools.sgl | nco sgl -server AGG P -user root -password ''
Ensure that external actions are configured in the object servers running the procedures:

File : SNCHOME/omnibus/etc/AGG_P.props

PA.Name: 'NCO PA'

PA.Password: 'CIEGAKHGBFGBBIGEDNBJCABEFGEBCBKGE'
PA.Username: 'root'

Ensure the object server|[s] are run under process control:

: SNCHOME/omnibus/etc/NCO_PA .conf
Command '$OMNIHOME/bin/nco objserv -name MTTRAPD -pa NCO PA' run as 'nrv8l'
Ensure that the PERL commands are installed on the object server[s] running the procedures

$SOMNIHOME/probes/<platform>/mttrapd Nhttp SnmpActions.pl

Update the mttrapd.rules rules files to use the include files:

include "mttrapd.bidir.rules"
include "mttrapd.snmpwatch.rules"

In order to use the new SNMPV3 engine commands the command line interface needs to configured. The simplest
way is to enable the HTTP interface as shown, using the probe properties:

Command port

NHttpd.EnableHTTP : TRUE

NHttpd.ListeningPort : 12001

NHttpd.AccessLog : "SOMNIHOME/log/mttrapd.nhttpd.access.log"

IBM Copyright 2020

Supports Guide to the MTTrapd probe

Get the engine information for a specific engineid
NCO_HTTP command:

SOMNIHOME/bin/nco _http -uri http://localhost:12001/probe/common -datatype
application/json -data '{"eventfactory":
[{"snmp_ action":"get engine info","engine id":"0000000000000102030405"}]}' -method post

Example Debug: logging messages

$snmp_action -> get engine info

$engine_id -> 0000000000000102030405

>>> Enter mttrapd.bidir.rules. >>>

Received get engine info request

Calling get engine info

SNMP Message (priority=7): snmp get engine info: Received engineID '0000000000000102030405".

SNMP Message (priority=7): snmp get engine info: Getting engine info of '0000000000000102030405"' completes.
get engine info returns 'EngineID:0000000000000102030405 boots:0 time:0 host:'.

EngineID '0000000000000102030405"'" info: EngineID:0000000000000102030405 boots:0 time:0 host:

<<< Exit mttrapd.bidir.rules. <<<

Dump the probes list of engineid's to a file:

SOMNIHOME/bin/nco _http -uri http://localhost:12001/probe/common -datatype
application/json -data '{"eventfactory": [{"snmp action":"print engines",
"file path":"/tmp/engineids.txt"}]}' -method post

Example Debug: logging messages:

$snmp action -> print engines

$file path -> /tmp/engines.txt

Flushing events to object servers

0 buffered alerts

>>> Enter mttrapd.bidir.rules. >>>

Received print engines request

Calling print engines

SNMP Message (priority=7): snmp print engines: Received filename '/tmp/engines.txt'.
SNMP Message (priority=7): snmp print engines completes.
print engines operation completes.

RULES>> print engines request successful

<<< Exit mttrapd.bidir.rules. <<<

Example contents:

File : /tmp/engines.txt

engineid:0000000000000102030405 Dboots:0 time:0 host:
engineid:80001F8880A862C66948DEFC5D00000000 boots:1 time:0 host:

IBM Copyright 2020

Supports Guide to the MTTrapd probe

Setting specific parameters for a given engineid:

$SOMNIHOME/bin/nco _http -uri http://localhost:12001/probe/common -datatype
application/json -data '{"eventfactory":

[{"snmp action":"update engine","engine id":"0000000000000102030405",

"engine boot":"","engine time":"", "engine host":"", "send probewatch":""}]}' -method
post

Example Debug: logging mesages:

$snmp action -> update engine

$engine id -> 0000000000000102030405

$engine boot ->

Sengine time ->

Sengine host ->

$send probewatch ->

Flushing events to object servers

0 buffered alerts

>>> Enter mttrapd.bidir.rules. >>>

Received update engine request

Calling update engine

2019-12-20T07:36:49: Information: I-UNK-000-000: SNMP Message (priority=6):
snmp_update engine: Received engineID '0000000000000102030405"' eboot update (0)
eboot time (0) ipaddr ''.

2019-12-20T07:36:49: Information: I-UNK-000-000: SNMP Message (priority=6):
snmp_update engine: Updating engine '0000000000000102030405' completes.
update engine operation completes.

RULES>> update engine request successful

<<< Exit mttrapd.bidir.rules. <<<

IBM Copyright 2020

Supports Guide to the MTTrapd probe

3.3 Host Naming facilities

The host lookups have always been an issue with the MTTrapd probe. A new feature to manage this performance
affecting facility is the internal hostname hash table. These features are enabled when the NoNameResolution
property is set to 0. Note that these new features have their limitations, and in general, it is best to disable the
naming resolution and use the probes rules files logic instead.

NoNameResolution : 0

\When enabled, the probe writes resolved host names and discarded host names to flat files in the
$SNCHOME/omnibus/var directory.

Related properties:

¢ ActiveHostnameDuration
¢ RefreshHostnamelnterval
* HostnameTableSize

When the host name table has reached its maximum size the probe will stop parsing the active list at the list entry
where it detects that the table is full.

The probe will not perform any instantaneous host name resolution for any traps received from new

hosts and the IP Address will not be stored in the hash hosts table. The event tokens will use numeric IP Addresses
only.

Reading from the IP host flat file

\When the probe starts up, it reads from the stored hosts in the file named:
SOMNIHOME/var/instance active iphost.list

\Where instance identifies the probe instance uniquely.

IBM Copyright 2020

Supports Guide to the MTTrapd probe

4 Resilience

4.1 Overview

\With Peer to Peer failover (P2P), two probes are used with the events from the slave probe being discarded. Should
the master probe become unavailable, the slave probe begins to forward its SNMP events to the Object Server. The
configuration can be a dual site, or an dual resilient object server pair. The two probes can be configured with
identical Server and ServerBackup settings to allow the SNMP events to be sent to the same Object Server, if this
is required.

IBM Copyright 2020

Supports Guide to the MTTrapd probe

4.2 Failover and Failback

These are the common features that allow the MTTrapd probe to failover to a specified Object Server and then
failback to the Primary Object Server;

Server : '"NCOMS P!
ServerBackup : '"NCOMS B'
NetworkTimeout . 30
PollServer : 60

On the back-up object server the property;

BackupObjectServer: TRUE
Must be set to allow failback.
The PollServer property must be larger than NetworkTimeout.

i.e.
PollServer = 2 * NetworkTimeout

IBM Copyright 2020

Supports Guide to the MTTrapd probe

4.3 Peer to Peer
\When configuring the MTTrapd probe for failover the PeerHost should be different.

Example configuration:
MASTER HOST Properties file on master_host:

'slave _host'
PeerPort : 6789
Mode : 'master'
BeatInterval
BeatThreshold

'master_host'

PeerPort : 6789
Mode : 'slave'
BeatInterval : 11
BeatThreshold HIIC

Port : 162

The BeatThreshold and Beatinterval are used to manage the timings of the heartbeats from the slave probe to the
master probe. The Beatlnterval must always be larger than the BeatThreshold, with the BeatThreshold adjusted to
allow probe time to respond to heartbeat requests. The probe may not be able to respond to heartbeat requests if it
is extremely busy, or CPU starved.

e.g.

BéLtInterval HE

BeatThreshold : 5

IBM Copyright 2020

Supports Guide to the MTTrapd probe

It is possible to run two MTTrapd probes on the same host in failover mode. In order to do this you would need to

use different trap ports

PeerPort

Mode
BeatInterval
BeatThreshold

MessagelLevel

PeerPort
Mode
BeatInterval

MessagelLevel

'master’

11

3

'debug’
'/opt/Omnibus/log/mttrapd master.

'/opt/Omnibus/log/mttrapd slave.log'
1620

IBM Copyright 2020

Supports Guide to the MTTrapd probe

5 Testing

5.1 UDP Traps

Sending a single trap to the localhost on Solaris;

/usr/sbin/snmp trapsend -g 6 -s 12 -a ".1.3.6.1.4.1.42.1.1.2 STRING (Testing the trap utility)"

Sending a periodic trap;

/bin/sh

while true

do

/usr/sbin/snmp_ trapsend -g 6 -s 12 -a ".1.3.6.1.4.1.42.1.1.2 STRING (Testing the trap utility)"

Sending a trap storm;

/bin/sh

while true

do

/usr/sbin/snmp trapsend -g 6 -s 12 -a ".1.3.6.1.4.1.42.1.1.2 STRING (Testing the trap utility)"

done

IBM Copyright 2020

Supports Guide to the MTTrapd probe

5.2 TCP Traps

The SNMP gateway supports the sending of TCP SNMP traps and so can be used alongside a test object server
being fed by a simnet probe to generate large amounts of TCP SNMP traps.

Example configuration;

CREATE MAPPING SNMP MAP

(
'@Summary"',
'@Severity',

= '@Location',

'@Node"',
'@AlertGroup'

)

Start up the reader - connect to the Object Server NCOMS
START READER NCOMS_READER CONNECT TO NCOMS1;
Start up the writer
START WRITER SNMP WRITER
(

TYPE = SNMP,

REVISION = 1,

GATEWAY = 'snmp-server',

PORT = 1620,

PROTOCOL = ‘TCP’,

MAP = SNMP MAP
)

[ADD ROUTE FROM NCOMS READER TO SNMP WRITER;

IBM Copyright 2020

Supports Guide to the MTTrapd probe

5.3 WireShark RAW TCP data

The WireShark program can be used to export an actual trap for replication of specific issues.

http://www.wireshark.org/

To extract the Trap[s]:
* Load snoop/ethereal into the GUI
» Select SNMP packet to export at [+] SNMP

* File-> Export Selected Packet Bytes-> Filename [trap#.bin]

To replay the trapls]:
o Start the MTTrapd probe
SOMNIHOME/probes/nco p mttrapd -all -port port

» Cat the binary trap file to the probes port using netcat

cat trap#.bin | nc localhost port

IMPORTANT : For SNMPV3 it is not recommended to replay traps out of sequence or repeatedly, as this can break
the SNMPv3 security. If traps need to be replayed more than once, the MTTrapd probe should be restarted before
the traps are replayed.

IBM Copyright 2020

http://www.wireshark.org/

Supports Guide to the MTTrapd probe

5.4 WireShark SNMPv3 trap inspection
WireShark allows SNMPv3 traps to be inspected through its Graphical User Interface.

Select the trap you would like to inspect, in the trap you can select an item such as the engineid and copy the value
using the right menu, or the keys control-shift-V.
e.g.

snmp.msgAuthoritativeEngineID == 00:11:22:33:44:55:66:77:88:99:00:11:22:33:44:55:66:77:88:99:00

This can be used to set the engineid in the mttrapd.conf file.
e.g.

createUser -e 001122334455667788990011223344556677889900 myusername SHA mySHApassphrase DES myDESpassphrase

'You can check the contents of the SNMPv3 trap by selecting the trap and opening the right menu:
Protocol preferences — Open Simple Network Management Protocol Preferences

Pop-Up — User Table [Edit]

Pop-Up — +

Engine ID, Username, MD5|SHA1, passphrase, DES|AES, passphrase

[ok]

[oK]

If successful, the GUI will show the contents of the encrypted trap.
If there is a problem, check the SNMPv3 details again.

IBM Copyright 2020

Supports Guide to the MTTrapd probe

5.5 SNMP v3 traps and informs

NET-SNMP is a free software package which allows the sending of traps and informs using snmptrap. It is available from these websites:

http://www.net-snmp.org/

Solaris download : http:/sunfreeware.blueyonder.co.uk

Start the mttrapd probe from the command line in debug mode when testing the probe
SOMNIHOME/probe/nco p mttrapd -messagelevel debug -messagelog stdout -all
From another host send the traps, to test send an SNMPv1 trap
SNMPv1 trap;
snmptrap -v 1 -c public PROBEHOST "" "" 6 99 ""e
The PROBEHOST can be set to have the protocol and port set.
e.g. TCP and 1620 on host 192.168.20.18 would be;

TCP:192.168.20.18:1620

Add the following line to the $OMNIHOME/var/mttrapd.conf file and restart the probe;
creat eUser jack MD5 jackjill

snmptrap -v 3 -C 1 -a MD5 -x DES -1 noAuthNoPriv -u jack -A "jackjill" -X "jackjill" PROBEHOST ""
1.3.6.1.4.1.2021.251.1

INFORM traps reply to the snmptrap application which allows the user/pass pairs to be tested, once they have been added to the mttrapd.conf
file.

For normal SNMPv3 traps specify the ENGINE ID in the both the snmptrap and mttrapd.conf file;
mttrapd.conf :

createUser -e 800000010203040506 jack MD5 jackjill

To send the trap use;

snnptrap -v 3 -e 0x800000010203040506 -a MD5 -x DES -1 noAuthNoPriv -u jack -A "jackjill" -X "jackjill"
PROBEHOST "" .1.3.6.1.4.1.2021.251.1

IBM Copyright 2020

http://sunfreeware.blueyonder.co.uk/

Supports Guide to the MTTrapd probe

5.6 More on SNMPv3 Traps

Common questions arise when creating the mttrapd.conf file.

The MTTrapd probe

File : mttrapd.conf

createUser —-e 80000000000000000000000001 someuser SHA PASSWORDE@123 AES PASSWORD@123
createUser —-e 80000000000000000000000002 SomeUSER SHA PASSWORDR123 AES PASSWORD@123
createUser -e 80000000000000000000000003 Some USER SHA PASSWORDE@123 AES PASSWORDE@123

Sending traps:

snmptrap -M $NETSNMP/share/snmp/mibs -e 80000000000000000000000001 -v3 -u someuser -a
SHA -A PASSWORD@123 -x AES -X PASSWORD@123 -1 authPriv TCP:localhost:1620 "" IF-
MIB::1inkUp IF-MIB::ifAlias s "alias:123"

$ snmptrap -M SNETSNMP/share/snmp/mibs -e 80000000000000000000000002 -v3 —-u SomeUSER
-a SHA -A PASSWORDE@123 -x AES -X PASSWORD@123 -1 authPriv TCP:localhost:1620 ""
IF-MIB::1inkUp IF-MIB::ifAlias s "alias:123"

$ snmptrap -M $NETSNMP/share/snmp/mibs -e 80000000000000000000000003 -v3 -u Some USER
-a SHA -A PASSWORD@123 -x AES -X PASSWORD@123 -1 authPriv TCP:localhost:1620 ""
IF-MIB::1inkUp IF-MIB::ifAlias s "alias:123"

The MTTrapd probe now supports extended encryption types:

MD5, SHA, or SHA256
DES, AES, AES192 or AES256

However, the Net-SNMP snmptrap command only supports privtype DES and AES, so cannot be used to test
extended privtype encryption types, even though these can be set and used in the mttrapd.conf file.

-a PROTOCOL set authentication protocol (MDS5|SHA|SHA-224|SHA-256|SHA-384|SHA-512)
-x PROTOCOL set privacy protocol (DES|AES)

File : mttrapd.conf

createUser —-e 80000000000000000000000010 SHA256Userl234 SHA256 PASSWORD123567890 AES PASSWORD123567890

sending the trap:

snmptrap -M SNETSNMP/share/snmp/mibs -e 80000000000000000000000010 -v3 -u
SHA256User1234 -a SHA256 -A PASSWORD123567890 -x AES -X PASSWORD123567890 -1 authPriv
TCP:localhost:1620 "" IF-MIB::1inkUp IF-MIB::ifAlias s "alias:123"

IBM Copyright 2020

Supports Guide to the MTTrapd probe

5.7 SNMP Flooding

The Netcool/SSM agent is excellent at sending vast quantities of traps and can be used to test loading of the
MTTrapd probe.

Xe}

cd /opt/netcool/ssm/config

vi monitors.cfg

attr=averageCpu

filtertype=name filter=".*"
interval=1 sampletype=delta
oper=ge thresh=0
actioneventstatus=alwaysReady actionevent=$psevent

create

cd /opt/netcool/ssm/bin

./init.ssmagent stop

./init.ssmagent start

./ssmcons
add <IP ADDRESS>:<PORT> public
add <IP ADDRESS>:<PORT> public
add <IP ADDRESS>:<PORT> public
add <IP ADDRESS>:<PORT> public

IBM Copyright 2020

Supports Guide to the MTTrapd probe

6 Troubleshooting

6.1 Performance

The performance of the SNMP probe is most affected by name resolution.

The following methods for obtaining hostnames/ip addresses are available to the operating system:
Files [/etc/hosts]
DNS
NIS

If the property ‘NoNameResolution’ is set to ‘1’ and there still appears to be a performance issue at the probe,
check the probe rules files for the commands:

e gethostname
e gethostaddr

As these impede the probes performance with respect to name resolution.

Adding hosts to the /etc/hosts file can improve performance, where DNS is slow.

Use DNS caching when DNS is required and if the /etc/hosts file begins to exceed few hundred lines, as DNS/NIS
is a memory resident lookup, which is significantly faster than using files.

6.1.1.1 Rules File Considerations

\With the NoNameResolution set to 1, the probe will not use naming resolution, which improves the probes overall
performance. However, the rules files may include repetitive host naming lookups, such as looking up the probe
servers hosthame and IP Address. The way to reduce this load is to use static variables as shown:

if (match ($MyHostname, ""))
{

$MyHostname = hostname ()

$MyIPHostname = gethostaddr ($MyHostname)
}

@Manager = %$Manager + "@" + $MyIPHostname

SNMP INFORMS require two way communication between the probe and INFORM sender. The MTTrapd probes
uses a separate head for TCP/UDP INFORMS, however, the probe still needs to process each INFORM, and it
should be expected that INFORMS are at least 50% slower than the equivalent TRAPS.

The object server’'s performance can affect how the probe performs if the object server is continually unresponsive,
causing the probe to switch to Store And Forward or event failover to the backup object server. Therefore it is
important to check that the object server is able to manage the load from the MTTrapd probe under peak loading,
by checking its profiler and trigger statistics.

IBM Copyright 2020

Supports Guide to the MTTrapd probe

6.2 Logging dropped traps

The MTTrapd probe includes a method to log what traps dropped, when the trap queue is full, so as to allow further
troubleshooting and diagnosis.

DSALog
Use this property to specify whether the probe logs traps that are lost because the trap queue has become full [1]
DSAPeriod

Use this property to specify the time, in seconds, that traps are logged when the DSALog property has a value of 1
[default is 30 seconds].

6.3 Missing Engineld’s

Sometime the Engineld's of the devices sending the traps is unknown due to legacy issues. SNMPv3 traps need a
engineld to be given in the mttrapd.conf file for them to be read by the probe. If the username and password is
known, then TSHARK [part of the Wireshark package] can be used to collect the engineld's arriving at the probes
port.

For example:

tshark -V -i eth0 -d tcp.port==1620,snmp | grep -1 msgAuthoritativeEnginelD:
Will show lines with msgAuthoritativeEnginelD: string for all the TCP SNMP traps on port 1620.
msgAuthoritativeEngineID: 010203040506

These can then be used in the mttrapd.conf file to create valid createUser entries.

createUser -e 010203040506 trapuser MD5 mdbpassword DES despassword

IBM Copyright 2020

Supports Guide to the MTTrapd probe

6.4 Missing traps

Traps can be lost anywhere within the system, from the trap source to the object server. Therefore it is important to
identify exactly where the traps are lost.

SNMP sender) -

Most systems allow tcpdump to be installed and can be used to confirm that the traps are arriving at the probe
server:

Network interface

Probe debug log file
Probe rules file

tepdump -s 0 -w /tmp/tcpdump ems.pcap host snmp sender host

Use the resulting data to check and confirm that all the traps arrive and have the right details, such as port, protocol,
SNMP settings, etc.

The probes debug log will include all the tokens for the traps that the probe is able to read. Traps that cannot be

read will be discarded silently. If the probes debug log does not include a trap seen in the tcpdump data, then there
are a number of reasons why this can happen. For SNMPV3 there is a separate section.

For SNMPv1 and SNMPv2c traps:
1. Traps must include uptime
2. The correct protocol must be set for the probe [udp/tcp]

If all the traps are seen in the debug log file, then the problem is with event processing rather than trap reception.
The probe supports a raw capture mode that allows events to be saved to a file and replayed to the Standard Input
probe in a test environment.

If the debug log file cannot be obtained it is possible to log specific probe tokens as required. For example:

log(warn,"SNMPV3Check:" + $PeerlPaddress + ":" + $IPaddress)

IBM Copyright 2020

Supports Guide to the MTTrapd probe

6.5 SNMPv3 traps

SNMPv3 traps have the additional security requirements placed on them. These are detailed within the RFC’s
regarding SNMPv3. From the MTTrapd probes perspective, SNMPv3 traps must adhere to the RFC requirements
as enforced by the NET-SNMP library. Typically, the MTTrapd probe will drop non-compliant traps silently, which
can cause administration problems as it makes troubleshooting difficult. The reason why the probe does not
perform any analysis of such traps is due to the way the traps are processed, within the NET-SNMP libraries, and
the overall requirement to ensure high performance.

Typically traps will be dropped if they are malformed, inconsistent, or time delays past the allowed SNMPv3
tolerance window. For example, if SNMPv3 traps are sent from two or more sources with the same enginelD, one or
more could be discarded depending upon how these traps present themselves to the probe. It is therefore important
to ensure that each element uses a unique enginelD to prevent traps from being dropped.

Equally, it is important to administer the network such that only authorised elements are able to send traps to the
MTTrapd probe server, to prevent denial of service.

IMPORTANT : The PersistentDir mttrapd.conf file is appended to rather than overwritten. Therefore it should be
kept up to date, with unique entries, to prevent security issues. Whilst remembering that the probe will require time
to create the PersistentDir mttrapd.conf file from the ConfPath mttrapd.conf file, if the PersistentDir mttrapd.conf file
is deleted.

The MTTrapd probe has two SNMPv3 specific properties to ensure that the probe is kept secure:

snmpv3ONLY

snmpv3MinSecuritylLevel
Setting the probe to use only SNMPv3 traps at a specific security level, allows other traps to be ignored and prevent
denial of service attacks.

For example, the highest security setting is:
snmpv3ONLY : 1
snmpv3MinSecurityLevel : 3

With snmpv3ONLY set to ‘1’ the probe logs:

Dropping the trap since it is v1/v2c trap

With snmpv3MinSecurityLevel set to ‘2’ or ‘3’ the probe logs:

Dropping V3 traps/informs because it does not match required SNMPv3 security level

IBM Copyright 2020

Supports Guide to the MTTrapd probe

mttrapd.conf:
createUser -e 800000020109840311 shauser SHA shapassword DES despassword

6.5.2.1 Example trap#1

Trap sent:
snmptrap -e 0x800000020109840311 -v3 -u shauser -1 NoauthNoPriv UDP:IPADDRESS:1621 0 coldStart.0

\Working probe properties:
snmpv3ONLY 1
snmpv3MinSecurityLevel : 1
Log Message: Trap is processed

Blocked probe properties:
snmpv3ONLY 1
snmpv3MinSecurityLevel : 2

Log message:
Warning: W-UNK-000-000: Dropping V3 traps/informs because it does not match required SNMPv3 security level,
configured level = 2, pdu level = 1

6.5.2.2 Example trap#2

Trap sent:
snmptrap -e 0x800000020109840311 -v3 -u shauser -a SHA -A shapassword -1 authNoPriv UDP:IPADDRESS:1621 0
coldstart.0

Working probe properties:
snmpv3ONLY 1
snmpv3MinSecurityLevel : 2
Log Message: Trap is processed

snmpv3MinSecuritylLevel .: K}

Log message:
Warning: W-UNK-000-000: Dropping V3 traps/informs because it does not match required SNMPv3 security level,
configured level = 3, pdu level = 2

6.5.2.3 Example trap#3

Trap sent:
snmptrap -e 0x800000020109840311 -v3 -u shauser -a SHA -A shapassword -x DES -X despassword -1 authPriv
UDP:IPADDRESS:1621 0 coldStart.0

\Working probe properties:
snmpv3ONLY 1
snmpv3MinSecurityLevel : 3
Log Message: Trap is processed

IBM Copyright 2020

Supports Guide to the MTTrapd probe

7 Useful scripts

7.1 SendSNMPv1HB

#! /bin/sh

if [S$# -ne 2]

then
echo "Usage : $0 [host] [port]"
exit

fi

export counter
counter=1

while true
do
date

snmptrap -v 1 -c public TCP:$1:$2 .1.3.6.1.4.45 localhost 2 0 '0' .1.3.6.1.4.45.32 s
"Test#$S{count} trap" &

counter="expr S$counter + 1°
sleep 60

done

#EOF

7.2 sendSNMPv2HB

#! /bin/sh
S# -ne 2]

echo "Usage : $0 [host] [port]"
exit

fi

export counter

counter=1

while true

ele}

date

snmptrap -v 2c -c public TCP:${1}:${2} "" NET-SNMP-EXAMPLES-

MIB: :netSnmpExampleHeartbeatNotification netSnmpExampleHeartbeatRate i1 S$Scounter

counter="expr S$counter + 1°
sleep 10

done

#EOF

IBM Copyright 2020

Supports Guide to the MTTrapd probe

7.3 sendSNMPv3DES _noauthnopriv

#! /bin/sh
mttrapd.conf entry:
createUser -e 010203040506 trapuser MD5 mdSpassword DES despassword

#
export count HOST PORT NUMBER

count=1
S$# -ne 3]

echo "Usage : $0 [host] [port] [number of traps]"

[Scount -le S$NUMBER]

snmptrap —-e 0x010203040506 -v3 -u trapuser TCP:S${HOST}:${PORT} "" coldStart.O
count="expr Scount + 1°

7.4 sendSNMPv3DES authpriv

#! /bin/sh
mttrapd.conf entry:
createUser -e 010203040506 trapuser MD5 mdbpassword DES despassword

#
export count HOST PORT NUMBER

count=1
S$# -ne 3]

echo "Usage : $0 [host] [port] [number of traps]"

[Scount -le S$NUMBER]

snmptrap -e 0x010203040506 -v3 -u trapuser -a MD5 -A mdbpassword -x DES -X despassword -1
authPriv TCP:S$S{HOST}:S$S{PORT} "" coldStart.O0
count="expr Scount + 1°

IBM Copyright 2020

Supports Guide to the MTTrapd probe

8 MIB MANAGER

8.1 Example usage

The files exported by MIB MANAGER include a README.txt that explains how to merge and use the exported rules
files.

This is an example merge of some IBM MIBs for NcKL 4.2:
To create the NcKL rules file for the given MIBs:
+ IMPORT MIBS into MIB Manager

Check they are all imported as expected using the pop-up and GUI.

Note: Usually it is easiest to remove all the mibs from MIB MANAGER, then import the base mibs, and then import
the custom mibs.

* EXPORT MIBS as NcKL 3.0

This export creates a file in the chosen export directory like:
<date&time>-nckl 3 0

* Zip up the directory for copying to the probe server:

<date&time>-nckl 3 0.zip

Review the README.txt file:
MIB Manager NCKL Format Rulesfiles
Instructions For Use:

The rulesfile was designed for use with the NCKL 3.x format rules.
The current IBM recommended and supported rulesfile format

is NCKL. It is highly recommended all users make use of the NCKL
format if at all possible.

To use this NCKL format rulesfile simply place includes for the two
per vendor master files into your snmptrap.rules file.

Those files are named:

<vendor>/<vendor>.m2r.master.include.lookup
<vendor>/<vendor>.m2r.master.include.rules

If there already exists vendor specific NCKL rules for the vendor
then simply include the above two m2r.master files in

<vendor>/<vendor>.master.include.lookup
<vendor>/<vendor>.master.include.rules

and in this case the <vendor>/<vendor>-preclass.snmptrap.lookup
file should be merged into the existing preclass lookup file.

IBM Copyright 2020

Supports Guide to the MTTrapd probe

To install on the new rules files on probe server:
* Unpack the zip file in a temporary directory

e.g.

unzip <date&time>-nckl 3 0.zip

cd <date&time>-nckl 3 0

ls -R1 ibm

ibm:

ibm-IBM-3200-MIB eventBrowserLogin.adv.include.snmptrap.rules
ibm-IBM-3200-MIB eventBrowserLogin.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventBrowserLogout.adv.include.snmptrap.rules
ibm-IBM-3200-MIB eventBrowserLogout.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventDoorOpen.adv.include.snmptrap.rules
ibm-IBM-3200-MIB eventDoorOpen.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventDriveError.adv.include.snmptrap.rules
ibm-IBM-3200-MIB_eventDriveError.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventFaultPosted.adv.include.snmptrap.rules
ibmfIBMf3200*MIB:eventFaultPosted.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventLoaderConfigChange.adv.include.snmptrap.rules
ibm-IBM-3200-MIB eventLoaderConfigChange.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventLoaderOK.adv.include.snmptrap.rules
ibm-IBM-3200-MIB eventLoaderOK.user.include.snmptrap.rules
ibm-IBM-3200-MIB_ eventLoaderPasswordChange.adv.include.snmptrap.rules
ibm-IBM-3200-MIB eventLoaderPasswordChange.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventLoaderRetriesExcessive.adv.include.snmptrap.rules
ibm-IBM-3200-MIB eventLoaderRetriesExcessive.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventMailSlotAccessed.adv.include.snmptrap.rules
ibm-IBM-3200-MIB eventMailSlotAccessed.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventRequestDriveClean.adv.include.snmptrap.rules
ibm-IBM-3200-MIB_eventRequestDriveClean.user.include.snmptrap.rules
ibm-IBM-3200-MIB eventStatusChange.adv.include.snmptrap.rules
ibm-IBM-3200-MIB eventStatusChange.user.include.snmptrap.rules
ibm-IBM-3200-MIB ibm3200Event.adv.include.snmptrap.rules
ibm-IBM-3200-MIB ibm3200Event.user.include.snmptrap.rules
ibm-IBM-3200-MIB.include.snmptrap.lookup
ibm-IBM-3200-MIB.include.snmptrap.rules
ibm-IBM-3200-MIB.sev.snmptrap.lookup
ibm-IBM-ENETDISPATCHER-MIB.adv.include.snmptrap.rules
ibm-IBM-ENETDISPATCHER-MIB.include.snmptrap.lookup
ibm-IBM-ENETDISPATCHER-MIB.include.snmptrap.rules
ibm-IBM-ENETDISPATCHER-MIB.sev.snmptrap.lookup
ibm-IBM-ENETDISPATCHER-MIB.user.include.snmptrap.rules
ibm-IBM2210-MIB.adv.include.snmptrap.rules
ibm-IBM2210-MIB.include.snmptrap.rules
ibm-IBM2210-MIB.sev.snmptrap.lookup
ibm-IBM2210-MIB.user.include.snmptrap.rules

ibm-IBMIROC-MIB ibmIROCtrapsels.adv.include.snmptrap.rules
ibm-IBMIROC-MIB ibmIROCtrapsels.user.include.snmptrap.rules
ibm-IBMIROC-MIB ibmIROCtrapsfr.adv.include.snmptrap.rules
ibm-IBMIROC-MIB ibmIROCtrapsfr.user.include.snmptrap.rules
ibm-IBMIROC-MIB ibmIROCtrapssys.adv.include.snmptrap.rules
ibm-IBMIROC-MIB ibmIROCtrapssys.user.include.snmptrap.rules
ibm-IBMIROC-MIB.include.snmptrap.rules
ibm-IBMIROC-MIB.sev.snmptrap.lookup
ibm-IBMTCPIPMVS-MIB.adv.include.snmptrap.rules
ibm-IBMTCPIPMVS-MIB.include.snmptrap.rules
ibm-IBMTCPIPMVS-MIB.sev.snmptrap.lookup
ibm-IBMTCPIPMVS-MIB.user.include.snmptrap.rules
ibm-IPSECV1-MIB.adv.include.snmptrap.rules
ibm-IPSECV1-MIB.include.snmptrap.rules
ibm-IPSECV1-MIB.sev.snmptrap.lookup
ibm-IPSECV1-MIB.user.include.snmptrap.rules
ibm-L2TV1-MIB.adv.include.snmptrap.rules
ibm-L2TV1-MIB.include.snmptrap.lookup
ibm-L2TV1-MIB.include.snmptrap.rules
ibm-L2TV1-MIB.sev.snmptrap.lookup
ibm-L2TV1-MIB.user.include.snmptrap.rules
ibm-preclass.include.snmptrap.rules

ibm-preclass.snmptrap.lookup

ibm.m2r.master.include.lookup

ibm.m2r.master.include.rules

IBM Copyright 2020

Supports Guide to the MTTrapd probe

* Interactively copy the files to the vendor specific directory

cp -1 * /opt/NcKL 42/rules/include-snmptrap/ibm

» Check and compare the pre-class files

Do not copy any files that already exist and check the differences:
check differences

diff /opt/NcKL 42/rules/include-snmptrap/ibm/ibm-preclass.include.snmptrap.rules ibm-
preclass.include.snmptrap.rules
diff /opt/NcKL 42/rules/include-snmptrap/ibm/ibm-preclass.snmptrap.lookup ibm-preclass.snmptrap.lookup

e Add in the master files

cd /opt/NcKL 42/rules/include-snmptrap/ibm
vim ibm.master.include.lookup

NcKL lookups
include "$NC RULES HOME/include-snmptrap/ibm/ibm.m2r.master.include.lookup"
#EOF

vim ibm.master.include.rules

NcKL Includes

include "SNC RULES HOME/include-snmptrap/ibm/ibm.m2r.master.include.rules"
#EOF

* Check the rules files syntax using nco_p_syntax

SOMNIHOME/probes/nco p syntax -rulesfile $SNC RULES HOME/snmptrap.rules -server NCKL4
-messagelevel warn

* Make any required modifications

Xe}
vi ibm.m2r.master.include.lookup
#include "$NC RULES HOME/include-snmptrap/ibm/ibm-preclass.snmptrap.lookup"

The rules files can then be used with the working mttrapd probe.

Notes:

'You should always perform rules file work after making a backup of the rules files, and preferably check the edits on
a test system, before deployment.

Once installed, the MIB Manager, loaded with the vendor MIBs can be used to send test traps to the MTTrapd
probe to confirm the rules files process the traps as required.

IBM Copyright 2020

	1 Introduction
	1.1 Overview
	Event processing

	2 Performance
	2.1 Name Resolution
	2.2 Replacing hostname calls
	2.3 Buffering
	2.4 SNMPv3 configuration
	2.4.1 SnmpConfigChangeDetectionInterval

	2.5 Measuring
	2.6 Monitoring
	2.7 Architectures
	2.7.1 Mixing Traps and INFORMS
	2.7.2 Mixing protocols
	2.7.3 Mixing SNMP versions
	2.7.4 Understanding SNMP data
	2.7.5 Example Architecture

	3 New features
	3.1 Heartbeating
	3.1.1 Heartbeat Property
	3.1.2 ProbeWatchHeartbeatInterval property

	3.2 SNMP engine facilities
	3.2.1 Configuring the command line interface
	3.2.2 New Commands

	3.3 Host Naming facilities

	4 Resilience
	4.1 Overview
	4.2 Failover and Failback
	4.3 Peer to Peer
	4.3.1 BeatThreshold and BeatInterval
	4.3.2 Single probe server

	5 Testing
	5.1 UDP Traps
	5.2 TCP Traps
	5.3 WireShark RAW TCP data
	5.4 WireShark SNMPv3 trap inspection
	5.5 SNMP v3 traps and informs
	5.5.1 Sending an SNMPv3 INFORM trap
	5.5.2 Sending an SNMPv3 trap

	5.6 More on SNMPv3 Traps
	5.6.1 Special characters in a passphrase
	5.6.2 Extended encryption support

	5.7 SNMP Flooding

	6 Troubleshooting
	6.1 Performance
	6.1.1 Name resolution
	6.1.1.1 Rules File Considerations

	6.1.2 SNMP INFORMS
	6.1.3 Object Server

	6.2 Logging dropped traps
	6.3 Missing EngineId's
	6.4 Missing traps
	6.5 SNMPv3 traps
	6.5.1 Additional SNMPv3 security
	6.5.2 Example Secure SNMPv3 configuration
	6.5.2.1 Example trap#1
	6.5.2.2 Example trap#2
	6.5.2.3 Example trap#3

	7 Useful scripts
	7.1 SendSNMPv1HB
	7.2 sendSNMPv2HB
	7.3 sendSNMPv3DES_noauthnopriv
	7.4 sendSNMPv3DES_authpriv

	8 MIB MANAGER
	8.1 Example usage

